22 research outputs found

    STUDY OF SOME PRETREATMENTS FOR OPTIMIZING THE DEHYDRATION OF BIOLOGICAL CARROTS

    Get PDF
    The experimental work proposed has tested the use of some pre-treatments to optimize the dehydration of biological carrots (var. Romance) The pre-treatments used were: 1) blanching (95°C) for 1.5 min, 2) blanching (70°) with citric acid 2% (w/v) for 2 min, 3) dipping in pectin’s 1% (w/v) for 1 min, 4) dipping in pectin’s 1% (w/v) with vacuum impregnation technology for 10 sec at 734 mbar. The aim of this work was to evaluate and compare the effects on carrot quality attributes. For this goal, the trial involved the use of various analytical techniques such as the enzyme activity test for peroxidase (POD), colorimetric analysis, determination of the total phenol content, extraction and quantification of carotenoids, rehydration process analysis. In addition, four semi-theoretical mathematical models were used to describe the pattern of dehydration of the pre-treated carrot washers. In light of the results obtained, the blanching pre-treatment at 70°C with 2% citric acid (w/v) has preserved more than all the nutritional characteristics of the carrot during the dehydration process. This pre-treatment showed an almost complete inactivation of the enzyme peroxidase (POD), an average dehydration rate of 6 hours, a colour angle (h) with a tint tending to red tones (the visual appearance is appreciated by some consumers and therefore considered a positive attribute in the choice of the product). Analysis of the carotenoid and total phenol content showed that blanching at 70°C with 2% citric acid was, like control and immersion in 1% pectin’s, the best pre-treatment with less loss of quality components (carotenoids and phenols) during dehydration. The work has also shown that the Logarithmic model can be used as the only model to predict moisture loss for all the dehydration pre-treatments used in experimentation

    The effect of intermittent drying on drying kinetics and quality change dynamics of organic carrot (daucus carota v. laguna)

    Get PDF
    The objective of this research was to investigate the effect of intermittent drying on drying kinetics and quality of organic carrots. Drying time can be reduced by 18.2 % to 25.5% after tempering for 1 and 3 hours.Tempering for 3 hours at 30% moisture levels had shown shorter drying time, minimal color changes at 8.43 and the highest retention of total carotenoids of up to 7 8%.The Page, Midili and Two term equations were found to be appropriate to describe the drying kinetics of organic carrot

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    The power of text-based indicators in forecasting Italian economic activity

    No full text
    Can we use newspaper articles to forecast economic activity? Our answer is yes; and, to this end, we propose a high-frequency Text-based Economic Sentiment Index (TESI) and a Text-based Economic Policy Uncertainty (TEPU) for Italy. Novel survey evidence regarding Italian firms and households supports the rationale behind studying text data for the purposes of forecasting. Such indices are extracted from approximately 1.5 million articles from 4 popular newspapers, using a novel Italian economic dictionary with valence shifters. The TESI and TEPU can be updated daily for the whole economy and for specific sectors or economic topics. To test the predictive power of our indicators, we propose two forecasting exercises. Firstly, we use Bayesian Model Averaging (BMA) techniques to show that our monthly text-based indicators greatly reduce the uncertainty surrounding the short-term predictions of the main macroeconomic aggregates, especially during recessions. Secondly, we employ these indices in a weekly GDP tracker, achieving sizeable gains in forecasting accuracy, both in normal and turbulent times
    corecore